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Nonlinear effects of gravitational and electromagnetic 
radiation on the propagation of light 

B Linet 
Equipe de Recherche Associte au CNRS No 533, Universitt Paris VI, Institut Henri 
PoincarB, 11, rue P et M Curie, 75231 Paris Cedex 05, France 

Received 27 February 1981 

Abstract. We determine the frequency shift between the emitter and the receiver due to 
nonlinear effects of gravitational and electromagnetic radiation from a bounded source. 

1. Introduction 

In astrophysics it is known that intensity and frequency fluctuations of the observed 
light, emitted by a distant object, may arise from gravitational radiation (Zipoy 1966, 
Zipoy and Bertotti 1968, Bergmann 1971, Burke 1975, Sazhin 1978). In the case of a 
single bounded source, these effects on the light propagation are investigated in the far 
zone of the gravitational field of this source within the framework of the first approxi- 
mation of general relativity. Yet, since the bounded source is assumed to be quasi- 
periodic, the linear effects are null when they are averaged over the time. Therefore, 
one often considers random gravitational waves. In this paper, we shall study the 
nonlinear effects of the gravitational radiation of a bounded source on the light 
propagation in the case of geometrical optics. 

The method of this approach also enables us to show the influence of electromag- 
netic radiation from a bounded source on the propagation of electromagnetic waves. In 
the Einstein-Maxwell theory, the asymptotic gravitational field depends on the elec- 
tromagnetic radiation of the bounded source. Then, we have an indirect effect of the 
electromagnetic field on the light propagation. Although we consider the light as a test 
electromagnetic field, we obtain, in a certain sense, an example of nonlinearity in 
electromagnetism resulting from the Einstein-Maxwell theory. 

In order to be in a position to calculate these effects, we have to know the asymptotic 
gravitational field of a bounded source in the Einstein-Maxwell theory. Also we shall 
recall in 9 2 some results which will be needed. Then we shall determine, in 9 3, the 
equation giving the frequency shift of the light by nonlinear effects when the light rays 
move in the asymptotic gravitational field. In 0 4, we shall perform the integration of 
this equation for a simple model of gravitational and electromagnetic radiation. We 
shall specify how the frequency shift is related to the impact parameter. This result 
might be applicable to the case of two images of the same object formed by a 
gravitational lens (Walsh et a1 1979). However the effect is probably unobservable. 
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2. Asymptotic gravitational field 

The study of gravitational radiation in a space-time with a bounded source is well 
described in the formalisms of Bondi et a1 (1962), Sachs (1962) and Newman and 
Penrose (1962). They work with an asymptotic expansion in l / r  along the null 
coordinate U. Yet, for some questions, it is more practical to use a coordinate system in 
which the metric is expressed asymptotically as in Cartesian-like coordinates. Therefore 
Papapetrou (1969) has introduced a coordinate system (xo, x i )  which is related to the 
Newman and Penrose coordinates by the transformation 

0 1 

2 3 

x = u + r ,  x = r sin 8 sin Q, 

x = r sin e cos Q, x = r  cos 8. 

Thus when the gravitational field is absent the trajectories of the light rays have a simple 
expression in this coordinate system. 

The development of the metric has the following form: 

Papapetrou (1969) has studied the development (2) of the metric. A tetrad formalism is 
introduced and only three vectors are necessary in order to express the metric. These 
are 

I”:  (I, xi/r) 

a ” : (0, cos e cos Q, cos e sin Q, -sin e )  
b”:(O, -sin Q, cos Q, 0). 

(4) 

The general form of the metric is 

g’”” = q”” + a’(a”a ” - b”b”) + b’(a”b” + a ”b”) + ct(a”a + b”b”) 
( 5 )  

+A’(l”a” +l”a”)+B‘(l”b“ + l”b”)+ C‘l’l”. 

The development (2) of g”” induces a similar development of the six quantities a’, . , . . 
We can express a , . , , with the help of the Newman and Penrose quantities. We 
obtain 

(1)’ 

0 0  (I), - (1) 
b’=-i(u -*) ,  c -0, 

B ‘ = - ( w  -Go), 

0 0 a t = u  + e ,  

(1)  1 0 0  
(6) 

(1)  i (1)  
C’ = -(& + J;), A’=-T(o +G ), 

J 2  J 2  
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where w o  has the following expression: 

1 a i a  
JZ ae sin 8 aq 

with $3 =-+- -. = -($ + 2 cot e)co 

On the other hand, the equation which governs the time-dependence of +: is 

(7) 

where the dot means the derivative with respect to U. We have now completely 
determined the asymptotic gravitational field in terms of the news function eo(u, 8, q). 

In the Einstein-Maxwell theory, Kozarzewski (1965) and Exton et al (1969) have 
studied the asymptotic gravitational field in the Newman-Penrose formalism. It is a 

simple matter to express yFv in this case. We obtain the same expressions for a , . . . in 
terms of the Newman-Penrose quantities. However we have to replace equation (7) by 
the following equation for the time evolution‘of 4:: 

(8) 

* -  : - - - :(9 +cot e)@ + 2 cot e)&’- c ~ O ~ O  

(l), 

4 -  : - -i(g - +cot e)@ + 2 cot e)&o-d‘Bo+ &$; 
where 4 : (u ,  8, q )  is the news function for the electromagnetic field. 

3. Light propagation 

We are interested in determining the influence of the asymptotic gravitational field, 
described above, on the light propagation in the limit of geometrical optics using a 
method of approximations. 

As a zero-order approximation (when the gravitational field is absent), we assume 
that the trajectory of the light ray is located in the plane Ox1x2 with an impact parameter 
x2  = D. The parametrised form of the path of this non-perturbed light ray is 

1 
x =-d, 

C 

(0)2 
x =D, x =o ,  (9) 

where we have introduced the frequency w of the electromagnetic wave. The tangent 
vector field of the curve (9) is 

(0 )  
k P  = ( l /c )w( l ,  1,0,0).  (10) 

In curved space-time the rays are geodesics. It is convenient to use the following 
form of geodesic equation for the tangent vector field of the geodesic line: 

kPa,k,  -$a,gF,kFkv = 0. (11) 

In the asymptotic gravitational field of the bounded source, the light ray is clearly a 
perturbation of the straight line (9). Therefore we let 

( 0 )  
k, = k, +Sk,. (12) 

When we introduce the development (2) of the metric in equation (1 l ) ,  we assume that 
the first term of order l / r  yields the equation for Sk,. Also we have 

(0)  (1) (0)  (0) 
kPapSka - $ a , [ ( l / r ) g , , ] k L ” k ”  = O .  
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The aim of this paper is to investigate from equation (13) the change in frequency of 
the light between the emitter and the receiver. We suppose that they are both at rest 
with respect to the bounded source. Moreover, at their positions, neglecting the 
gravitational field, the frequency is given by ko. Taking into account (3), we can write 
the equation (13) for a = 0 in the following form: 

d 1 (l),y(o) (0)  

--6ko+-80( dh 2r g k ,  k , )  = 0. 

The expression in parentheses in (14) is calculated with the help of formula (5); we 
obtain 

(1) g’””k,k,  (0 )  (0)  =(:) [ ( ~ 0 ~ ~ - l ) ~ C ’ - 2 s i n c p ( c o s ~ - 1 ) B ’ - s i n ~ c p ~ ~ ’ ]  (1) (1)  (15) 2 

(1) (1) (1)  
where C’, B’ and a’ are given in (6). 

Since we suppose that the news function go is quasi-periodic, only nonlinear effects 
in uo could give a contribution to Sko which is not null when averaged over the time. 
Eliminating linear terms in co and using the time-evolution equation (S), we deduce 
from (14) the following equation for Sko: 

in which all quantities are calculated on the straight line (9) and therefore depend only 
on A.  

4. Frequency shift 

In order to integrate equation (16), we must specify the news functions uo and 4;.  As 
we seek only an order of magnitude of the change in frequency, we shall calculate it for a 
simple model of quadrupole gravitational radiation and dipole electromagnetic radia- 
tion that we shall suppose time periodic and axisymmetric with respect to the axis O x 3 .  

We recall that if PG and PE are the radiative gravitational and electromagnetic 
powers, respectively, we have the general formula 

where G is Newton’s gravitational constant. Consequently, for our simple model of 
radiation we can express uo and 4: in terms of PG and PE. We find 

1/2 1 15 GPG 
2 2  bo = -( -) (7) sin2 e exp(iw,u), 

With the news functions (lS),  equation (16) can be integrated in the form 

G 15 3 
Sko(h2) - Sko(h 1) = z( ~ P G  + ~ P E )  ;( :)’ (cos cp - 1)2 sin cp dA 
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where A and A 2  are respectively the values of the parameter A at the emitter and at the 
receiver. We denote by -L1 and Lz respectively the position of the axis Ox' of the 
emitter and of the receiver. By integrating we obtain the frequency shift in closed form: 

Z = S W / W  =(G/C5)(?P~+qP~)I(L1,L2; D )  (20) 
with 

One can verify that I(L1, L z ;  D )  is a positive function. Therefore we see from (20) 
that the frequency shift is always a blueshift. In a way the photon gains energy by 
nonlinear interaction with gravitational and electromagnetic radiation of a bounded 
source. 

We remark that if L1 + CO the expression (21) is divergent. This fact is not surprising 
because we have considered a time-periodic bounded source. Indeed, during an infinite 
interval of time, it radiates an infinite amount of energy. Physically we must not take 
L1 + CO for this case. On the other hand, when Lz+ CO the situation is different because 
the light tends to propagate in the direction of the gravitational wave. 

Now, we consider two light rays in the plane Ox1x2 having two different impact 
parameters D and D' for the same distances L1,  and L2.  We can express the 
corresponding frequency shifts z and z' with the following assumptions: 

D/L1 << 1, D/L2<< 1,  D'lL1 << 1 ,  D'/Lz<< 1. (22) 

An asymptotic expression of the expression ( 2 1 )  yields the formula 

z - t' = -(4G/c5)(?PG +;PE) ln(D/D'). (23) 

From (23), we see that the light ray which is situated closer to the bounded source 
appears to be redshifted with respect to the other one. 

5. Conclusion 

The frequency shift, given by the formulae (20) and (23), has been determined for a 
simple model of gravitational and electromagnetic radiation of the bounded source. In 
a more general case, it is reasonable to expect that the effects will be qualitatively the 
same. 

The effect (23) might be interesting in the case of a single object which has been split 
into two images by a gravitational lens (Walsh et a1 1979). However, this effect is 
exceedingly small. To obtain a relative frequency shift of lo-', the bounded source 
must radiate l C 7  solar masses per year. Of course, the essential part of the relative 
frequency shift is the electromagnetic contribution. Thus, we can neglect the linear and 
nonlinear effects in cro when we calculate the frequency shift. Consequently, we remark 
that the relative time delay due to the difference in path length does not influence it. 

An appreciably more favourable situation has to be found, perhaps by considering a 
more realistic radiative bounded source. 
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